66 research outputs found

    From ”Sapienza” to “Sapienza, State Archives in Rome”. A looping effect bringing back to the original source communication and culture by innovative and low cost 3D surveying, imaging systems and GIS applications

    Get PDF
    Applicazione di tecnologie mensorie integrate Low Cost,web GIS,applicazione di tecniche di Computational photography per la comunicazione e condivisione dei dati, sistemi di Cloud computing.Archiviazione Grandi DatiHigh Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360°shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed

    Aphasic seizures in patients with temporopolar and anterior temporobasal lesions: a video-EEG study

    Get PDF
    Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan

    ENSO and the interpretation of the post 2000 temperature standstill

    No full text
    The period from 2000 to 2016 shows a modest warming trend that the advocates of the anthropogenic global warming theory have labeled as the "pause" or “hiatus.” These labels were chosen to indicate that the observed temperature standstill period results from an unforced internal fluctuation of the climate (e.g. by heat uptake of the deep ocean) that the computer climate models are claimed to occasionally reproduce without contradicting the anthropogenic global warming theory (AGWT) paradigm. In part 1 of this work, it was shown that the statistical analysis rejects such labels with a 95% confidence because the standstill period has lasted more than the 15 year period limit provided by the AGWT advocates themselves. Anyhow, the strong warming peak observed in 2015-2016, the "hottest year on record," gave the impression that the temperature standstill stopped in 2014. Herein, the authors show that such a temperature peak is unrelated to anthropogenic forcing: it simply emerged from the natural fast fluctuations of the climate associated to the El Niño–Southern Oscillation (ENSO) phenomenon. By removing the ENSO signature, the authors show that the temperature trend from 2000 to 2016 clearly diverges from the general circulation model (GCM) simulations. Thus, the GCMs models used to support the AGWT are very likely flawed. By contrast, the semi-empirical climate models proposed in 2011 and 2013 by Scafetta, which are based on a specific set of natural climatic oscillations believed to be astronomically induced plus a significantly reduced anthropogenic contribution, agree far better with the latest observations

    A comparison between PID and PIDA controllers

    No full text
    In this paper we analyze the performance that can be achieved by means of Proportional-Integral-Derivative-Acceleration (PIDA) controllers and we compare it with that achievable by means of PID controllers in order to evaluate the cost/benefit ratio when an action proportional to the second derivative of the control error is added to the control law. In particular, different process transfer functions are considered and the tuning of the controllers is determined with genetic algorithms by minimizing the integrated absolute error. Both the set-point following and load disturbance rejection tasks are evaluated. In order to provide a fair comparison, a constraint on the maximum sensitivity is also posed so that the achieved robustness is taken into account

    Natural climate variability, part 1: Observations versus the modeled predictions

    No full text
    During the whole history of the planet, astronomical factors (orbital and solar variability) have determined the energy balance of the Earth and generated natural climate oscillations affecting the life of plants, animals and human beings at all time scales. During the last decades, severe concerns have been raised about whether human activities could have been so influential as to deeply modify the natural variability of the global climate and, in particular, could have caused a significant warming since the beginning of the 20th century. To properly address the latter issue, it is required to understand the phenomenology of the natural climate fluctuations. These are well emphasized by several climate indexes such as the Atlantic Multidecadal Oscillation, the Pacific Decadal Oscillation, the El Niño–Southern Oscillation and others. This complex natural dynamic is still not reproduced by the general circulation models (GCMs) supporting the Anthropogenic Global Warming Theory (AGWT), which is mainly advocated by the Intergovernmental Panel on Climate Change (IPCC). In this “part 1” of our work we briefly introduce the general topic and statistically compare observed and GCM modeled global surface warming trends from 1860 to 2016. We find that the models have significantly overestimated the observed warming during the historical record. In addition, we compare observed and modeled temperature trends of three significant periods: from Jan/1922 to Dec/1941, from Jan/1980 to Dec/1999 and from Jan/2000 to Dec/2016. We find that only during the 1980-1999 period the observed and synthetic records show compatible warming trends within the 95% confidence level. The severe discrepancy between observations and modeled predictions found during the 1922-1941 and 20002016 periods further confirms, according to the criteria proposed by the AGWT advocates themselves, that the current climate models have significantly exaggerated the anthropogenic greenhouse warming effect
    corecore